226 research outputs found

    Role of Academic Biobanks in Public-Private Partnerships in the European Biobanking and BioMolecular Resources Research Infrastructure Community

    Get PDF
    Public-private partnerships (PPP) are an efficient means to advance scientific discoveries and boost the medical innovations needed to improve precision medicine. The increasing number and novel nature of such collaborations is keeping the biomedical field in a constant flux. Here we provide an update on PPP development involving academic biobanks in the BBMRI community (the European Biobanking and BioMolecular Resources Research Infrastructure) and report the views on PPP of 20 key players from this field. The interviewed academic representants broadly show interest for their institution to establish PPP and initiate or partner with BBMRI expert centers. The results indicate that PPP has gained foothold in this area of biomedical research, with great promise to facilitate access to samples and data and to improve data interoperability and reproducibility.Peer reviewe

    Meeting report: the Human Genome Meeting (HGM) 2019 in Seoul, Korea

    Get PDF
    The 2019 Human Genome Meeting (HGM2019) of the Human Genome Organization (HUGO) was held in Seoul, Korea, from 24 to 26 April 2019, at Ewha Woman's University on their beautiful campus (https://en.wikipedia.org/wiki/Ewha_Womans_University). The twenty-third HGM was a truly international event, attracting some 507 registrants from 29 countries spanning 6 continents who interacted both formally and informally at 4 plenary lectures, 10 parallel scientific sessions, 10 ancillary events, such as workshops, luncheon sessions, 2 social events, poster sessions, and interactions with exhibitors. (https://www.hugo-hgm.org/program/scientific). Furthermore, the HGM in Seoul featured 42 international and 7 local distinguished speakers highlighting the worldwide draw of this annual meeting

    Literature-aided meta-analysis of microarray data: a compendium study on muscle development and disease

    Get PDF
    Background: Comparative analysis of expression microarray studies is difficult due to the large influence of technical factors on experimental outcome. Still, the identified differentially expressed genes may hint at the same biological processes. However, manually curated assignment of genes to biological processes, such as pursued by the Gene Ontology (GO) consortium, is incomplete and limited. We hypothesised that automatic association of genes with biological processes through thesaurus-controlled mining of Medline abstracts would be more effective. Therefore, we developed a novel algorithm (LAMA: Literature-Aided Meta-Analysis) to quantify the similarity between transcriptomics studies. We evaluated our algorithm on a large compendium of 102 microarray studies published in the field of muscle development and disease, and compared it to similarity measures based on gene overlap and over-representation of biological processes assigned by GO. Results: While the overlap in both genes and overrepresented GO-terms was poor, LAMA retrieved many more biologically meaningful links between studies, with substantially lower influence of technical factors. LAMA correctly grouped muscular dystrophy, regeneration and myositis studies, and linked patient and corresponding mouse model studies. LAMA also retrieves the connecting biological concepts. Among other new discoveries, we associated cullin proteins, a class of ubiquitinylation proteins, with genes down-regulated during muscle regeneration, whereas ubiquitinylation was previously reported to be activated during the inverse process: muscle atrophy. Conclusion: Our literature-based association analysis is capable of finding hidden common biological denominators in microarray studies, and circumvents the need for raw data analysis or curated gene annotation databases

    GeneHopper: a web-based search engine to link gene-expression platforms through GenBank accession numbers

    Get PDF
    Global gene-expression analysis is carried out using different technologies that are either array- or sequence-tag-based. To compare experiments that are performed on these different platforms, array probes and sequence tags need to be linked. An additional challenge is cross-referencing between species, to compare human profiles with those obtained in a mouse model, for example. We have developed the web-based search engine GeneHopper to link different expression resources based on UniGene clusters and HomoloGene orthologs databases of the National Center for Biotechnology Information (NCBI)

    CORE_TF: a user-friendly interface to identify evolutionary conserved transcription factor binding sites in sets of co-regulated genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set of similarly regulated promoters or to look for conservation in orthologous promoter alignments.</p> <p>Results</p> <p>We have developed a novel tool, "CORE_TF" (Conserved and Over-REpresented Transcription Factor binding sites) that identifies common transcription factor binding sites in promoters of co-regulated genes. To improve upon existing binding site predictions, the tool searches for position weight matrices from the TRANSFAC<sup><it>R </it></sup>database that are over-represented in an experimental set compared to a random set of promoters and identifies cross-species conservation of the predicted transcription factor binding sites. The algorithm has been evaluated with expression and chromatin-immunoprecipitation on microarray data. We also implement and demonstrate the importance of matching the random set of promoters to the experimental promoters by GC content, which is a unique feature of our tool.</p> <p>Conclusion</p> <p>The program CORE_TF is accessible in a user friendly web interface at <url>http://www.LGTC.nl/CORE_TF</url>. It provides a table of over-represented transcription factor binding sites in the users input genes' promoters and a graphical view of evolutionary conserved transcription factor binding sites. In our test data sets it successfully predicts target transcription factors and their binding sites.</p

    Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy

    Get PDF
    Gene regulatory networks give important insights into the mechanisms underlying physiology and pathophysiology. The derivation of gene regulatory networks from high-throughput expression data via machine learning strategies is problematic as the reliability of these models is often compromised by limited and highly variable samples, heterogeneity in transcript isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in which we construct and train intraspecies Bayesian networks that are translated and assessed on independent test sets from other species in a reiterative procedure. The interspecies disease networks are subjected to multi-layers of analysis and evaluation, leading to the identification of the most consistent relationships within the network structure. In this study, we demonstrate the performance of our algorithms on datasets from animal models of oculopharyngeal muscular dystrophy (OPMD) and patient materials. We show that the interspecies network of genes coding for the proteasome provide highly accurate predictions on gene expression levels and disease phenotype. Moreover, the cross-species translation increases the stability and robustness of these networks. Unlike existing modeling approaches, our algorithms do not require assumptions on notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and can deal with missing data. We show that the identified key components of the OPMD disease network can be confirmed in an unseen and independent disease model. This study presents a state-of-the-art strategy in constructing interspecies disease networks that provide crucial information on regulatory relationships among genes, leading to better understanding of the disease molecular mechanisms

    Human Papillomavirus Deregulates the Response of a Cellular Network Comprising of Chemotactic and Proinflammatory Genes

    Get PDF
    Despite the presence of intracellular pathogen recognition receptors that allow infected cells to attract the immune system, undifferentiated keratinocytes (KCs) are the main targets for latent infection with high-risk human papilloma viruses (hrHPVs). HPV infections are transient but on average last for more than one year suggesting that HPV has developed means to evade host immunity. To understand how HPV persists, we studied the innate immune response of undifferentiated human KCs harboring episomal copies of HPV16 and 18 by genome-wide expression profiling. Our data showed that the expression of the different virus-sensing receptors was not affected by the presence of HPV. Poly(I:C) stimulation of the viral RNA receptors TLR3, PKR, MDA5 and RIG-I, the latter of which indirectly senses viral DNA through non-self RNA polymerase III transcripts, showed dampening in downstream signalling of these receptors by HPVs. Many of the genes downregulated in HPV-positive KCs involved components of the antigen presenting pathway, the inflammasome, the production of antivirals, pro-inflammatory and chemotactic cytokines, and components downstream of activated pathogen receptors. Notably, gene and/or protein interaction analysis revealed the downregulation of a network of genes that was strongly interconnected by IL-1β, a crucial cytokine to activate adaptive immunity. In summary, our comprehensive expression profiling approach revealed that HPV16 and 18 coordinate a broad deregulation of the keratinocyte's inflammatory response, and contributes to the understanding of virus persistence

    Calling on a million minds for community annotation in WikiProteins.

    Get PDF
    WikiProteins enables community annotation in a Wiki-based system. Extracts of major data sources have been fused into an editable environment that links out to the original sources. Data from community edits create automatic copies of the original data. Semantic technology captures concepts co-occurring in one sentence and thus potential factual statements. In addition, indirect associations between concepts have been calculated. We call on a 'million minds' to annotate a 'million concepts' and to collect facts from the literature with the reward of collaborative knowledge discovery. The system is available for beta testing at http://www.wikiprofessional.org.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    • …
    corecore